PremaM

Reprinted from the Journal of the Indian Botanical Society
Vol. XX, Nos. 1 \& 2, 1941, pp. 73-103

$$
0829 \cdot 16
$$

DESMIDS FROM KODAIKANAL, SOUTH INDIA

By M. O. P. Ifengar, M.A., Ph.D. (Lond.), F.L.S.

AND

Miss B. Vimala Bat, B.Sc. (Hons.), MiSc. (Madras)

DESMIDS FROM KODAIKANAL, SOUTH INDIA*

By M. O. P. Ifengar, M.A., Ph.D. (Lond.), F.L.S.

AND

Miss B. Vimala Bat, B.Sc. (Hons.), M.Sc. (Madras)

Received for publication on Soptember 3rd, 1940
The number of papers dealing with systematic accounts of Desmids from various parts of India is rather few. Wallich's (1860) paper on the Desmidiaceæ from lower Bengal was the first systematic account of Desmids from India. In this paper he described nearly 140 species collected in the neighbourhood of Raneegunge-a place about 120 miles North-West of Calcutta. Hobson in 1863 published an account of two Desmids from Mahabuleshwar in the Bombay Presidency. Grunow in 1865 recorded 14 Desmids from the Island of Banka near Singapore. In 1873 Zeller recorded a few Desmids from Burma. Lagerheim (1888) recorded about 52 species from Bengal. Joshua $(1885,1886)$ recorded about 188 species and varieties from Rangoon. Turner (1893) gave an account of about 540 forms from North India based mainly on Wallich's extensive collections and notes. Borge (1899) recorded several forms from Bengal, Ceylon and Singapore. W. and G. S. West (1897) described a few desmids from Singapore. Schmidle in 1900 gave an account of 26 Desmids collected by Hansgirg in Bombay and the neighbourhood. In 1902, W. and G. S. West recorded about 246 species from Ceylon and Fritsch in 1907 recorded some Desmids from the same country. In 1907 W. and G. S. West gave a further account of 148 species, chiefly from Burma and a few from Bengal. In 1926 Carter recorded about 100 species from North-Western Himalayas, North-Western Frontier and Satpura Hills in the Central Provinces. About 121 species were recorded by P. Brühl and K. Biswas (1926) from the Loktak lake in the Manipur State.

All these records are from North India, Burma or Ceylon. Practically no work appears to have been done so far on the Desmidiacers of South India. The Desmids which form the subject of this paper were collected in 1921, 1923, 1933 and 1936 from Kodaikanal, a hill station in South India, with an clevation of about $7-8000$ feet above the sea-level. The climate is sub-tropical and nearly temperate. Most of the forms described in this paper are planktonic and collected from the Kodaikanal lake and a fow were collected from a swamp in Kodaikanal. The material was preserved in 4% formalin.

[^0]On the whole 35 forms are recorded in this paper, representing 13 genera. Of these 7 are new varieties and one a new form. Of the remaining 27 forms, 8 are new to India, Burma and Ceylon.

Systematic

Genus Ǵonatozygon De Bary 1856

1. Gonatozygon Kinahani (Arch.) Rabenh.
(Figs. 1, 2a, 2b)
Gonatozygon Kinahani Rabenhorst, Flor. Europ. Alg., III, 1868, p. 156 ; Cooke, Brit. Desmids, 1887, p. 3, P1. 1, Fig. 3; De Toni, Syll. Alg., I, 1889, p. 802 ; W. and G. S. West, Mon. Brit. Desmidiacece, I, 1904, p. 35, Pl. 2, Figs. 1-3.

Gonatozygon leiodermum Turner, 1893, p. 24, P1. 20, Fig. 5.
Cells mostly single, sometimes in ehains of two or more cells; 10-19 times longer than broad; cylindrical ; apices truncate slightly dilated. Cell wall perfectly smooth ; pyrenoids 6-10 in each chloroplast.

Dimensions :

$$
\begin{array}{lllll}
\text { Length } & . . & . . & . & 124-259 \cdot 5 \mu \\
\text { Breadth } & . & . . & . . & 10 \cdot 9-14 \mu
\end{array}
$$

Hab.-Planktonic in Kodaikanal Lake.

The present form agrees with Gonatozygon leiodermum Turner (Turner, 1893) in general appearance and dimensions. Turner's Desmid was collected at Nilgiris, another hill station in Sonth India, of the same elevation as Kodaikanal, viz., $7-8,000 \mathrm{ft}$. above the sealevel. With regard to Turner's G. leiodermum, W. and G. S. West (1895, p. 65) state that it is "very probably an Oedogonium". But Turner's figure shows clearly that it is not an Ocdogonium as suspected by West and West, since the cells are swollen at both the ends as is characteristic of Gonatozygon and not at one end only as in Oedogonium. There appears to be therefore no sufficient reason for considering the alga an Oedogonium and not a Gonatozygon.

Genus Netrium Nägeli 1849

2. Netrium digitus (Ehrbg.) Itzigs and Rothe.

> (Figs. 5, 6)

Penium digitus Ralfs, Brit. Desm., 1848, p. 150, PI. 25, Fig. 3 ; Rabenhorst, Flor. Europ. Alg., III, 1868, p. 118 ; Delponte, Desm. Subalp., 1877, p. 86, P1. 15, Figs. 50 and 51 ; West and West, Freshw. Alg. Ceylon, 1902, p. 134.

Penium digitus forma rectum Turner, Freshw. Alg. E. India, 1893, p. 18, Pl. 1, Fig. 27.

Netrium digitus West, W. and G. S., Mon. Brit. Desm., I, 1904, p. 64, Pl. 6, Figs. 14-16 ; Smith, Wisconsin phytoplankton, pt. II, 1924, p. 6, P1. 52, Fig. 5; Krieger, Die Desmidiaccen der Deutsch Limn, Sunda Expedition, 1932, p. 158, Pl. 3, Fig. 4.
Cells single, large, 3-4 times longer than broad, unconstricted, elliptic oblong, gradually attenuated towards the apices. Apex round, cell wall smooth. Chloroplast with eight longitudinal plates deeply notched at the free ends.

Dimensions :

Length	155-20
Breadth at the middle	40-44 μ
Breadth at the apex	18-23.7 μ

Hab.-Kodaikanal lake.

Genus Closterium Nitzsch 1817

3. Closterium libellula Focke var. pulneyensis var. nov.
(Figs. 7, 8a, 8b)
Cells single, size variable, generally large, 4-5 times longer than broad, not constricted, gradually attenuated from the middle towards the apices. Apex broadly rounded. Cell wall smooth, colourless or slightly brownish, with girdles very faintly visible at the isthmus. Each chloroplast slightly notched or constricted and not separated, with about 8 long plates. Pyrenoids two or three in each semicell.

Dimensions :

Length	73-122.6 μ
Breadth at the middle	16.4-27 μ
Breadth at the apex	$8 \cdot 5-13 \cdot 6 \mu$

Hab.-Kodaikanal Lake.

This at first sight appears to be a species of Netrium. But a treatment with concentrated KOH solution shows that the cell wall is made up of two picces. A few girdle bands also are seen very faintly after this treatment. So this belongs to the Placodermæ. This form comes very near Closterium libellula var. intorruptum (Krieger, 1935, p. 256, Pl. 12, Fig. 6) in general shape and measurements but the chloroplasts of the latter are completely divided into two in each semicell, while in the present form it is only deeply notched in the riddle. This kind of a notched chloroplast is not seen in any of the varieties. The desmid appears therefore to be a new variety of $C l$. libellula.

4. Olosterium Kützingii Breb.

(Figs. 16, 17, 18, 19)
Wolle, Desm. U.S., 1884, p. 47, PI. 8, Fig. 8 ; Cooke, Brit. Desm., 1887, p. 134, Pl. 5, Fig. 3 ; De Toni, Syll. Alg., 1889, p. 850 ; Turner, Freshw. Alg. E. India, 1893, p. 22, Pl. 1, Fig. 12 ; Nordst., Index Desm., 1896, p. 152; W. and G. S. West, Mon. Brit. Desm., I, 1904, p. 186, Pl. 25, Figs. 6-11; Bernard, Protococcacées et Desm., 1908, p. 64, Figs. 52-54; Smith, Wisconsin phytoplankton, pt. JI, 1924, p. 12, Pl. 53, Fig. 6.
Cells single, medium size ; median part fusiform ; outer and inner margins almost equally convex, attenuated towards each extremity into long processes; apices slightly incurved, round and often slightly swollen ; ccll wall colorless or straw coloured, striated, about 15 striæ visible across the cell. Pyrenoids 5-10 in each semi-cell.

Dimensions :

Length	$296-456 \cdot 7 \mu$
Breadth at the middle	$9-14 \mu$
Breadth at the apex	..	.	$2 \cdot 5 \cdot 3 \cdot 6 \mu$

Hab.-Kodaikanal Lake.
This form is slightly smaller (narrower) especially in breadth than those described by W. and G. S. West and Smith, but agrees with Turner's form in all measurements. This form has 5-10 pyrenoids whereas in the type the number is 4-5 in each chloroplast.

5. Closterium Diance Ehrenberg

(Figs. 9, 14, 15)
Closterium acuminatum Rabenh., Flor. Europ. Alg., III, 1868, p. 133 ; Wolle, Desm. U.S., 1884, p. 44 ; De Toni, Syll, Alg., 1889, p. 840.

Closterium Diana Ralfs., Brit. Desm., 1848, p. 168, P1. 28, Fig. 5 ; Rabenh., Flor. Europ. Alg., III, 1868, p. 133 ; Cooke,

[^1]Brit. Desm., 1887, p. 26, P1. 23, Fig. 3; Nordst., Index Desm., 1896, p. 104 ; W. and G. S. West, Freshw. Alg. Ceylon, 1902, p. 140; W. and G. S. West, Mon. Brit. Desm., I, 1904, p. 130, Pl. 15, Figs. 1-6; Krieger, Die Desmidiaceen der Deutsch. Limn. Sunda Expedition, 1932, p. 160, Pl. 4, Fig. 4.
Cells of medium size, $10-12$ times longer than their diameter, fairly well curved, outer margin about $110-125^{\circ}$ of are, inner margin scarcely tumid gradually and gracefully attentuated towards the apices, dorsal margin at each apex obliquely truncate and slightly thickened. Cell wall smooth and of a reddish brown color. Chloroplasts obscurely ridged, $7-10$ pyrenoids in a single row.

Dimensions :

Length or distance between the

apices\quad.	\ldots	\ldots	$159-246 \cdot 5 \mu$	
Breadth	\ldots	\ldots	\ldots	$16-23 \cdot 7 \mu$
Breadth at the apex	\ldots	..	5μ	

Hab.-Kodaikanal Lake.
This is slightly smaller than the European form and resembles Cl. Diance var. areuatum in measurements. It differs from the type in having $7-10$ pyrenoids while in the type only $5-6$ pyrenoids are present. W. and G. S. West, however, have shown 7 pyrenoids in one of their figures (W. and G. S. West, Mon. Brit. Desm., I, 1904, Pl. 15, Fig. 4).
6. Closterium didymotocum Corda
var. annulatum var. nov.
(Figs. 4, 11, 12)
Cells single, fairly big, 22-24 times longer than their diameter; outer margin about $25-35^{\circ}$ of are ; inner margin very slighly concave, gradually and very slightly attenuated towards the apices. Apex broad and with rounded angles, truncate; cell wall smooth and brownish. Chloroplasts ridged, with 7-9 pyrenoids.

Dimensions :

Length	.	.	.	$297-333 \mu$
Breadth	\ldots	.	\ldots	$12-14 \mu$
Breadth at the apex	\ldots	..	$\mathbf{8} \mu$	

$\boldsymbol{H a b}$.-Kodaikanal Lake.

In the fully developed cell, the wall is brownish and girdle bands are also seen well. The dimensions of the cell are very much smaller than those of the type (W. and G. S. West, Mon. Brit. Desm., I, 1904, Pl. 12, p. 116, Figs. 1-5) and several annular thickenings are formed. But the apex of the cell is not thickened or dark as in the type and in this respect the form comes near Cl. didymotocum var. asperulum op. cit., Pl. 12, Figs. 11-13) but the cell wall differs from that of var. asperulum, in being smooth and colored. The minute asperulate type of cell wall as seen in the var. asperulum is also absent here.

Again this comes near Cl. silesiacum Gronblad (Beitrag zur Kenntnis der Desmidiaceen Schlesiens, 1926, p. 10, Pl. 1, Figs. 3-5) and agrees in measurements especially in breadth, but hie figures do not show the peculiar annular markirgs on the cells. Hence it is best to keep it as a new variety of Cl. didymotocum, which may be named var. annulatum.

Genus Pleurotænium Nägeli 1849

7. Pleurolænium Trabecula (Ehrbg.) Nägeli
(Figs. 13, 20, 21)
Docidium Trabecula Wolle, Desm. U.S., 1884, p. 48, Pl. 9, Figs, 2-4 and Pl. 11, Figs. 1-7; Turner, Fresho. Alg. E. India, 1893, p. 38.

Pl. Trabecula West, W. and G. S., Mon. Brit. Desm., I, 1904, p. 209, Pl. 30, Figs. 11-13; Smith, Wisconsin phytoplankton, pt, II, 1924.
Cells big, semi-cells with one basal inflation and a slight second undulation above it gradually attnetuated towards the apex. Lateral margins almost straight, apices rounded, destitute of tubercles. Cell wall punctate.

Dimensions.

Length			
Breadth at the isthmus	.	$464-551 \mu$	
Breadth at the apex	$20-25 \cdot 6 \mu$
Isthmus

Hab.-Planktonic in Kodaikanal Lake.
8a. Pleurotanium minutum Delp. var. gracile Wille (Figs. 3, 10a, 10b, 10c)
W. Krieger, Die Desmidiaceen der Deutseh. Limn. Sunda Expedition, 1932, p. 167, Pl. 6, Fig. 7.

Pleurotenium (?) minutum (Ralfs) Delp. var. gracile Wille, De Toni, Syll. Alg., 1889, I, p. 905.

Penium minutum (Ralfs) Cleve var. gracile Wille, W. and
G. S. West., Mon. Brit. Desm., I, 1904, pp. 103-4, Pl. 10. Fig. 6.

Cells single, elongated with parallel walls and a very slight constriction in the middle, 16-20 times as long as broad ; apex flat with a small depression in the middle, breadth uniform throughout except near the tip where it becomes slightly narrower; cell-wall very minutely punctate.

Dimensions :

Length	$170-198 \cdot 5 \mu$
Breadth	\ldots	$9-14 \cdot 3 \mu$
Breadth at the apex	$6 \cdot 8 \mu$	

Hab.-Planktonic in Kodaikanal Lake.

8b. Pleurotenium Kayei Rabenh.
(Figs. 22, 31)
Docidium horridum Borge, Austral. Susswasser-chlorophyceen, 1896, p. 28, Pl. 4, Fig. 55.

Pleurotrenium Kayei Rabenh., Flor. Europ. Alg., III, 1868, p. 144; Gutwinski, De algis a Dre M. Raciborski anno 1899 in insula Java collectis, 1902, p. 587, Pl. 37, Fig. 25 ; W. and G. S. West, Freshw. Alg. Ceylon, 1902, p. 141, Pl. 18, Figs. 33-34.
Cells big, 4-5 times longer than their breadth (with spines), semi-cells with spinose margins caused by always four rings of prominent double-headed spines, gradually tapering from the base to the apex ; apex slightly dilated, truncate furnished with a peripheral ring of about 10 spine-like projections. Cell-wall smooth or sparsely punctate, punctæ not quite distinct.

Dimensions :
Length $217-275 \cdot 5 \mu$
Breadth at isthmus with spines .. $\quad 54 \cdot 9-58 \cdot 5 \mu$
Breadth at isthmus without spines $40-47 \cdot 5 \mu$
Breadth at the apex with spines .. $\quad 43 \cdot 9-51 \mu$
Breadth at the apex without spines $29-32 \cdot 9 \mu$
Isthmus $21 \cdot 9-25 \mu$
Hab.-In a swamp at Kodaikanal.
Gutwinski (1902) has shown 5 and 6 whorls of spines in his figures while Borge (1896) gives only four rings of spines. The number of spines seems to be variable.
9. Pleurotonium tessellatum (Joshua) Lagerh.
var. bulbosum Krieger
(Figs. 23, 24)
Krieger, Die Desmidiaceen der Deutsch. Limn. Sunda Expedition, 1932, p. 168, Pl. 6, Fig. 11.
Cells single, large, well constricted with sides slightly attenuated towards the apices; basal inflation slight ; apex truncate with short spine-like projections. Cell-wall with about 7-10 transverse rings of irregular quadrangular projecting areas, areas being small at the base and elongated at the apex.

Dimensions :

Hab.-In a swamp at Kodaikanal.
This form shows a close resemblance to Pleurotenium trochiscum var. tuberoulatum (Smith, Wisconsin phytoplankton, pt. II, 1924, p. 17,-

Pl. 55, Fig. 33) but as pointed out by Krieger (1932), Pl. trochiscum is more cylindrical, whereas the present form is somewhat narrowed towards the apex. The spines at the apex in the present form are again more robust than in Pl. trochiscum var. tuberculatum. But the difference between ihese two species appears to be very very small.

Genus Euastrum Ehrenbg. 1832
10. Euastrum sinuosum Lenorm.
(Fig. 25)
Ralfs, Brit. Desm., 1848, p. 85 ; Cooke, Brit. Desm., 1887 , p. 71, Pl. 34, Fig. 3; Nordst., Index Desm., 1896, p. 235 ; W. and G. S. West, Freshw. Alg. Ceylon, 1902, p. 148 ; W. and G. S. West, Mon. Brit. Desm., II, 1905, p. 20, Pl. 36, Fig. 1.
Cells deeply constricted, sinus narrowly linear with a dilated extremity; semi-cells three lobed; polar lobe prominent and outstanding; angles rounded; apex with a narrow median incision; lateral lobes bilobulate, lobules separated by a widely open sinus, rounded lobules, upper not projecting so far as the lower, the margin of the lower lobule slightly crenate; semi-cells with three prominent protuberances across the base, and two across the centre. Cell wall punctate. A small but prominent scrobiculation in each of the protuberance.

Dimensions :

Hab.-In a swamp at Kodaikanal.
The crenate margin of the lower lobule and the presence of a small prominent scrobiculation in the centre of the protuberances are not seen in the type. In the presence of scrobiculations this resembles E. sinuosum var. ceylanicum West and West (W. and G. S. West, Freshw. Alg. Ceylon, 1902, p. 148, P1. 19, Fig. 6). But, as only one or two specimens of the present form were found in the material, and since the side views of these individuals could not be obtained, it was decided to leave it for the present under the type itself until more material is available.

Genus Mierasterias Agardh 1827

11. Micrasterias pinnatifida (Kutz.) Ralfs.

(Figs. 26, 27)
Ralfs, Brit. Desm., 1848, p. 77, PI. 10, Fig. 3; Wolle, Desm. U.S., 1884, p. 116, Pl. 37, Figs. 7-8; Cooke, Brit. Desm., 1887, p. 54, Pl. 20, Fig. 3; Turner, Freshw. Alg. E. Indic, 1893, p. 88, Pl. 5, Fig. 3 ; W. and G. S. West, Mon. Brit. Desm., II, 1905,

Figs, 22-39. Fig. 22. Pleurotanium Kayei, single semi-cell showing spines ($\times 410$). Fig. 23. Pleurotornium tessellatum var. bulbosum, single cell with chloroplasts ($\times 190$). Fig. 24. Pleurotenium tessellatum var. bulbosum, semi-cell with quadrangular areas ($\times 190$). Fig. 25. Euastrum sinuosum, single cell ($\times 410$). Fig. 26. Micrasterias pinnatifida, single cell with chloroplasts ($\times 410$). Fig. 27. Mierasterias pinnatifida, portion of the cell with pores ($\times 410$). Fig. 28. Cosmarium obsoletum, single cell with pores and basal mamille with pore canals at the base of semicells ($\times 410$). Fig. 29. Cosmarium obsoletum, vertical view with chloroplasts ($\times 410$). Fig. 30. Micrasterias incisa var. Wallichiana, single cell with chloroplasts ($\times 410$). Fig. 31. Pleurotanium Kayei, single cell with
p. 80, Pl. 41, Figs. 7-11; Smith, Wisconsin phytoplankton, pt. II, 1924, p. 41, Pl. 59, Figs. 1-2 ; Brühl and Biswas, Alg. of Loktak Lake, 1926, p. 279, Pl. 6, Fig. 51.
Cells small, slightly broader than long, deeply constricted, sinus open, isthmus very narrow. Semi-cells 3 lobed polar lobe, flattened or slightly convex, widely spreading extremities narrower than those of lateral lobes, ends bifid, lateral lobes horizontally disposed, semifusiform in shape with bifid ends. Incisions between lateral lobes and polar lobe very broad, Cell wall minutely punctate.

Dimensions :

Length	$47-51 \cdot 3 \mu$
Breadth	\ldots	..	$49-54 \cdot 7 \mu$	
Breadth of the polar lobe	..	$38-46 \mu$		
Isthmus	$8-10 \mu$

Hab.-Planktonic in Kodaikanal Lake.
The Kodaikanal form seems to be slightly smaller than the type.
12. Micrasterias incisa (Breb.) Ralfs.

var. Wallichiana Turner

(Figs. 30, 35)
Turner, Freshw. Alg. E. India, 1893, p. 89, P1. 6, Fig. 52 ; Brtihl and Biswas, Alg. of the Loktak Lake, 1926, p. 280, Pl. 6, Figs. 7 and 9.
Cells small, little broader than long, deeply constricted, sinus narrow and opening out; isthmus narrow; semicells three lobed, polar lobe entire, broadly trapezoidal, outer margins converging towards the apex, ending in small spines at the end; lateral lobes horizontal, trapezoidal, ending in short spines towards the sinus; incision between the polar lobe and lateral lobes broad; vertical view oblong elliptic. Cell wall minutely punctate.

Dimensions :

Length	$38-41 \mu$
Breadth	$45-51 \mu$
Istbmus	$7-11 \mu$
Polar lobe	$34-40 \mu$
Thickness		11μ

Hab.-Planktonic in Kodaikanal Lake.

[^2]The measurements of the desmid agree with those given by Turner except that it is slightly shorter in length. The length given by Turner is $48-53 \mu$ whereas h re it is only $38-41 \mu$.

Genus Cosmarium Corda 1834
13. Cosmarium moniliforme (Turp.) Ralfs. forma punctata Lagerh.
(Figs. 40, 41, 42, 43)
W. and G. S. West, Mon. Brit. Desm., III, 1908, p. 22, PI. 87, Fig. 4.
Cells single, deeply constricted, sinus widely open, usually acute; semi-cells circular or subcircular; side views of semi-cells almost circular, verticle view circular. Cell wall punctate. One axile chloroplast in each semi-cell with a central pyrenoid and six radiating plates.

Dimensions:
Length $\quad . \quad . \quad . \quad 40-47 \mu$
Breadth 21-27 μ
Isthmus $5-76 \mu$
Hab.-Planktonic in Kodaikanal Lake.
> 14. Cosmarium moniliforme (Turp.) Ralfs forma panduriformis Heimerl

(Figs. 46, 47, 48)
Dysphinctum inferum Turner, Fresho. Alg. E. India, 1893, p. 40, pl. 1, Fig. 21.
C. moniliforme forma panduriformis W. and G. S. West, Mon. Brit. Desm., III, 1908. p. 22, P1. 67, Figs. 8-9.
Cells single, very small, slightly constricted; isthmus broad with an obtusely rounded sinus; semi-cells subcircular, vertical view circular, cell wall smooth. Chloroplasts axile, one in each - semi-cell with a cenural pyrenoid and about 6 to 7 radiating vertical plates.

Dimensions :

Length
$17-19 \cdot 6 \mu$			
Breadth
Isthmus
$8-12 \mu \mu$			

Hab.-Planktonic in Kodaikanal Lake.
This comes near C. pseudarctum (W. and G. S. West, Mon. Brit. Desm., III, 1908, p. 32, Pl. 68, Figs. 12-14) in general shape and size but the four radiating cruciately disposed lobes of the chloroplast are not seen in the present form. This also shows some resemblance to C. connatum (W. and G. S. West, Mon. Brit. Desm., III, 1908,
p. 25, Pl. 76, Figs. 15-17) in shape but the present form is much smaller and has a smooth wall.

15. Cosmarium obsoletum (Hanztsch) Reinsch

(Figs, 28, 29)
Cosmarium palustre Turner, Freshw. Alg. E. India, 1893, p. 60, Pl. 8, Figs. 65 and 64 ; Pl. 9, Fig. 29.
C. obsoletum subsp. palustre. Brïhl and Biswas, Alg. of the Loktak Lake, 1926, p. 285̄, Pl. 9, Figs. 91-92.
C. obsoletum Nordst., Index Desm., 1896, p. 186, W. and G. S. West, Freshov. Alg. Ceylon, 1933, p. 164 ; W. and G. S. West, Mon. Brit. Desm., II, 1905, p. 133, P1. 56, Figs. 1-3.
Cells single, medium size, a little broader than long, deeply constricted, sinus narrowly linear with a dilated apex; semi-cells semielliptic; basal angles submamillate with a small pore or canal ; apex convex or slightly flat. Vertical view elliptic slightly attenuated towards poles. Cell wall punctate. Ohloroplasts axile, each with two pyrenoids.

Dimensions :

Length	$36-40 \mu$
Breadth	$42-45 \cdot 7 \mu$
Isthmus	$18-25 \mu$
Thickness	$23 \cdot 9$

Hab.-Planktonic in Kodaikanal Lake.
This agrees in dimensions with the smaller European form but shows a mamillate thickening through which the canal referred to in the large tropical forms is also seen (W. and G. S. West, Mon. Br. Desm., 1905, II, p. 134, Pl. 56, Fig. 4). But the place where this form occurs is not typically tropical but subtropical and nearly temperate.
16. Cosmarium globosum Bulnh.
(Figs. 32, 33, 34)
Rabenh. Flor. Europ. Alg., III, 1868, p. 178 ; Cooke, Brit. Desm., 1887, p. 121, Pl. 43, Fig. 6; Nordst., Index Desm., 1896, p. 130 ; W. and G. S. West, Mon. Brit. Desm., III, 1908, p. 29, Pl. 68, Figs. 1-2.
Cells small, slightly constricted, sinus rapidly widening from an acute apex; semi-cells subcircular; vertical view circular. Ohloroplasts axile, with a central pyrenoid and a number (6-8) of vertically disposed lobes.

Dimensions :
Length $27-31 \mu$
Breadth $20-22 \mu$
Isthmus 18-20 μ
Hab.-Planktonic in Kodaikanal Lake.
p. 25, Pl. 76, Figs. 15-17) in shape but the present form is much smaller and has a smooth wall.

15. Cosmarium obsoletum (Hanztsch) Reinsch

(Figs. 28, 29)
Cosmarium palustre Tırner, Freshw. Alg. E. India, 1893, p. 60, Pl. 8, Figs. 65 and 64 ; Pl. 9, Fig. 29.
C. obsoletum subsp. palustre. Briuhl and Biswas, Alg. of the Loktak Lake, 1926, ${ }^{\text {n }}$ 285, Pl. 9, Figs. 91-92.
C. obsoletum Nordst., Index Desm., 1896, p. 186, W. and G. S. West, Freshv. Alg. Ceylon, 1933, p. 164; W. and G. S. West, Mon. Brit. Desm., II, 1905, p. 133, Pl. 56, Figs. 1-3.
Cells single, medium size, a little broader than long, deeply constricted, sinus narrowly linear with a dilated apex; semi-cells semielliptic; basal angles submamillate with a small pore or canal ; apex convex or slightly flat. Vertical view elliptie slightly attenuated towards poles. Cell wall punctate. Chloroplasts axile, each with two pyrenoids.

Dimensions :

Length	$36-40 \mu$
Breadth	$42-45 \cdot 7 \mu$
Isthmus	$18-25 \mu$
Thickness	$23 \cdot 9 \mu$

Hab.-Planktonic in Kodaikanal Lake.
This agrees in dimensions with the smaller European form but shows a mamillate thickening through which the canal referred to in the large tropical forms is also seen (W. and G. S. West, Mon. Br. Desm., 1905, II, p. 134, Pl. 56, Fig. 4). But the place where this form occurs is not typically tropical but subtropical and nearly temperate.
16. Cosmarium globosum Bulnh.
(Figs. 32, 33, 34)
Rabenh. Flor. Europ. Alg., III, 1868, p. 178 ; Cooke, Brit. Desm., 1887, p. 121, Pl. 43, Fig. 6; Nordst., Index Desm., 1896, p. 130 ; W. and G. S. West, Mon. Brit. Desm., III, 1908, p. 29, Pl. 68, Figs. 1-2.
Cells small, slightly constricted, sinus rapidly widening from an acute apex; semi-cells subcircular; vertical view circular. Chloroplasts axile, with a central pyrenoid and a number (6-8) of vertically disposed lobes.

Dimensions :

Length	$27-31 \mu$
Breadth	$20-22 \mu$
Isthmus	$18-20 \mu$

Hab.-Planktonic in Kodaikanal Lake.

17. Cosmarium pachydermum Lund.
 var. indicum var. nov.

(Figs. 36, 37, 38, 39)
Cells single, large, about $1 \frac{1}{4}$ times longer than broad, rather deeply constricted, sinus narrowly linear with a dilated apex; semi-cells widely semielliptic, apices broad, sometimes truncate; side view of the semi-cells subcircular, vertical view elliptic ; cell wall punctate with big puncta. Chloroplasts ridged with two pyrenoids in each semi-cell. In vertical view they are stellate with several vertical ridges.

Dimensions :

Hab.-Planktonic in Kodaikanal Lake.
This form closely resembles Cosmarium pachydermum (W. and G. S. West, Mon. Br. Desm., II, 1905, p. 139, Pl. 57, Fig. 7) in general shape, but is a much smaller form with thinner walls. It comes very near c. pachydermum var. athiopicum but differs in size, in the shape of semi-cells and also in the absence of minor punctæ between scrobiculations.

Genus Xanthidium Ehrenberg 1837

18. Xanthidium sexmamillatum W. and G. S. West var pulneyensis var. nov.

(Figs. 53, 57)

Cells fairly big, little longer than broad, without spines, deeply constricted, sinus broadly open; semi-cells transversely elliptic; lateral margin with 3 mamillæ on each side, one apical, one sub-apical, and one median. Six strong spines on the apices of these six mamillæ on each semi-cell. Apical and sub-apical spines curved upwards, the median being almost horizontal. A fourth distinetly marked mamillæ with a short spine on both the lower sides of the semi-cell. Apex mostly straight. Vertical view nearly rhomboidal, sides thickened slightly more yellowish, three asymmetrically disposed spines at each pole. Cell wall punctate; pyrenoids 2 in each semi-cell.

Dimensions :

Length without spines	$49-52 \mu$
Length with spines	$75-78 \mu$
Breadth without spines		..	$40-45 \mu$
Breadth with spines	\ldots	..	$68-84 \mu$
Isthmus
Thickness

Hab.-In a swamp at Kodaikanal.

This form comes very near X. sexmamillatum W. and G. S. West (Freshw. Alg. from Burma, 1907, p. 211, Pl. 15 Figs. 11, 12) especially in the six spines situated on the apices of six mamillate projections, but differs from it in the presence of two more small, well marked, mamiliæ on both the lower sides of the semi-cell, with the beginnings of a very short spine on each. The vertical view of the present form differs from that of \bar{X}. sexmamillatum in being more rhomboidal and in the spines being disposed asymmetrically. In this respect (vertical view) it resembles X. pseudobengalicum Gronblad (New Desmids from Finland and North Russia, 1921, p. 50, Pl. 4, Figs. 32, 33) but there are no mamillate projections in \boldsymbol{X}. pseudobengalicum.

Genus Arthrodesmus Ehrenberg 1838

19. Arthrodesmus subulatus Kutz.

(Figs. 44, 49, 50)
A. convergens var. subulatus (Kutz.) Rabenh. Flor. Europ. Alg., III, 1868, p. 227.
A. subulatus Kutz., Species. Alg., 1849, p. 176; Wolle, Desm. U.S., 1884, p. 96, Pl. 24, Figs. 11, 12 ; De Toni, Syll. Alg., 1889, p. 1059; Turner, Freshw. Alg. E. India, 1893, p. 133 ; W. and G. S. West, Mon. Brit. Desm., IV, 1912, p. 109, Pl. 116, Fig. 14 ; Smith, Wisconsin phytoplankton, pt. II, 1924, p. 127, Pl. 85, Figs. 1-3.

Cells single, a little longer than broad (without spines), deeply constricted, sinus widely open, angles of the semi-cells, each furnished with a long stout straight spine. Vertical view elliptic with a long spine at each pole. Cell wall finely punctate. Chloroplasts axile, one in each semi-cell with a central pyrenoid and two deeply forked processes radiating one towards each pole.

Dimensions :

Length				
Breadth without spines	.	..	$23 \cdot 5-26 \cdot 8 \mu$	
Breadth with spines	$17-23 \mu$	
Isthmus	$3 \cdot 65-5 \cdot 5$
Thickness	$12-14 \mu$

Hab.-Planktonic in Kodaikanal Lake.
Genus Staurastrum Meyen 1829

20. Staurastrum corniculatum Lund. var. spinigerum West

(Figs. 45, 51, 52, 56)
W. and G. S. West, Mon. Brit. Desm., IV, 1912, p. 164, pl. 125, Figs. 19-22.

40

41

52

 64

66

60

42

50

61

Figs. 40-66. Fig. 40. Cosmarium moniliforme forma punctata, single cell with pores ($\times 410$). Fig. 41. Cosmarium moniliforme forma punctata, semi-cells circular and chloroplasts ($\times 410$). Fig. 42. Cosmarium moniliforme forma punctata, semi-cells with flattened apices and chloroplasts. ($\times 410$). Fig. 43. Cosmarium moniliforme forma punctata, vertical view with chloroplasts ($\times 410$). Fig. 44. Arthrodesmus subulatus, single cell with pores ($\times 410$). Fig. 45 . Staurastrum corniculatum var. spinigerum West, single cell ($\times 410$). Fig. 46. Cosmarium moniliforme forma panduriformis, vertical view with chloroplasts $(\times 410)$. Fig. 47. Cosmarium moniliforme forma panduriformis, single cell with chloroplasts $(\times 410)$. Fig. 48. Cosmarium moniliforme forma panduriformis, two daughter cells.

Cells small, longer than broad, slightly constricted; semi-cells subcuneate, gradually widened from a broad base; sides very slightly convex, apex straight, angles of semi-cells produced and each furnished with a minute spine. Vertical view triangular with straight lsides and 3 small spines at the 3 angles. Ohloroplasts two, one in each semi-cell, axile, with a central big pyrenoid and 3 deeply forked processes radiating one into each angle.

Dimensions :

Length	$25-29 \mu$
Breadth	$17-21 \cdot 9 \mu$
Isthmus	10μ
Spine	$1.7-2 \mu$

Hab.-Planktonic in Kodaikanal Lake.
This form exhibits variation in having the processes at the angles sometimes tumid (Fig. 45) and sometimes straight (Fig. 51).

21. Staurastrum Tohopikaligense Wolle.

> (Figs. 79, 86)

St. nonanum Turner, Freshw. Alg. E. India, 1893, p. 119, P1. 15, Fig. 15.

St. Tohopekaligense De Toni, Syll. Alg., 1889, p. 1162 ; W. and G. S. West, Fresho. Alg. Ceylon, 1902, p. 180 ; W. and G. S. West and N. Carter, Mon. Brit. Desm., V, 1923, p. 178, Pl. 155, Figs. 12-14; Smith, Wisconsin phytoplankton, pt. II, 1924, p. 121, P1. 82, Figs. 8-11.
Cells of medium size, deeply constricted, sinus narrow at first, later widely opening; semi-cells broadly oval ; lateral angles produced to form long slender processes; upper part of semi-cells with

[^3]six sub-apical processess, altogether about 9 in each semi-cell. All processes hollow, ending in two long divergent spines. Vertical view triangular with sides straight, bending only at the angles, produced into long processes, with another pair at each lateral side. Oell wall punctate. Chloroplast axile, with a ivig central pyrenoid and 6-9 radiating processes, some extending into the processes also.

Dimensions :

Length without spines	$32-44 \cdot 4 \mu$	
Length with spines	$72-80 \mu$
Breadth without processes	\therefore.	$27-32 \cdot 2 \mu$	
Breadth with processes	\ldots	$58-65 \mu$	
Isthmus

Hab.-Planktonic in Kodaikanal Lake.
The type species has two or three spines at the end of each process. But here the number of spines is always two. This form appears to be same as St. nonanum Turner.
22. Staurastrum unicorne Turner
var. gracile var. nov.
(Figs. 54, 55, 60)
Cells single, small, deeply constricted; semi-cells cuneate or triangular the sides beirg more convex; angles of the semi-cells produced into smooth processes with capitate ends and short fine spines; the processes before the capitate ends narrow and elongated. Vertical view always trigonal, the lateral sides being mostly flat or occasionally concave. Chloroplasts two, axile, one in each semi-cell with a central axis enclosing a big pyrenoid and three massive deeply forked processes radiating one into each angle.

Dimensions :

Length	.		.	$21-25 \cdot 5 \mu$
Breadth with processes		..	$38-43 \cdot 9 \mu$	
Isthmus	.	.	.	$5-7 \mu$

Hab.-Planktonic in Kodaikanal Lake.
This Desmid resembles Staurastrum scolopacinum (Turner, Freshw. Alg. E. India, 1893, p. 107, Pl. 17, Fig. 10) in general appearance, but is more constricted below the swellings. In tbis latter point it comes near Staurastrum unicorne (Turner, Freshw. Alg. East India, 1893, p. 107, Pl. 15, Fig. 16). But the dorsal surface of the present form is more flat and the arms are much more elongated and narrowed than in St. unicorne. It differs from it again in having the sides either flat or concave in vertical view and also in having the tips much more tumid.

23. Staurastrum contectum Turner var. inevolutum Turner.

(Figs. 67, 71)

W. and G. S. West, Some North American Desmidea. Trans. Linn. Soc., Series II, B. 1896, p. 257, Pl. 16, Fig. 18.

Cells small, single, broader than long, decply constricted, sinus acute; semi-cells trapezoidal; bifid and curved spine on each side near the apex, apex broad and flat with two spines at each angle. Vertical view triangular, sides slightly concave. Cell wall minutely punctate; chloroplasts two, one in each semi-cell, axile with a central axis enclosing a single big pyrenoid, three deeply forked processes radiating one into each arm.

Dimensions :

Length	.	.	$21-29 \mu$
Breadth with spines	.	..	$32-40 \mu$
Isthmus
$5-7 \mu$			

Hab.-Planktonic in Kodaikanal Lake.

24. Staurastrum longibrachiatum (Borge) Gutwin. var. intermedium var. nov.

(Figs. 77, 80, 81).
Cells single, medium size, fairly constricted, sinus widely open, semi-cells truncate gradually attenuated towards the apex with four big verruce at the apex, two big in the centre and two small on either side. Angles of the semi-cells produced into long hollow slender processes with sharply dentate upper and lower margins, ends of the processes bifurcated, a short verruca at the base of the process on each side of the semi-cells. Vertical view elliptic, poles continued into long processes with slightly undulate margins, and about four verrucæ in the top view. Cell wall punctate. Chloroplasts axile with a central big pyrenoid, and four radiating forked processes.

Dimensions :

Hab.-Planktonic in Kodaikanal Lake.
This form rescmbles St. longibrachiatum (Borge) Gutwin. (Borge, Austral. Susswass. Chl., 1896, p. 15, Pl. 2, Fig. 22 ; Gutwinski, De Algis a Dre M. Raciborski anno 1899 in Insula Java coll., 1902, p. 605, Pl. 40, Fig. 62) in general appearance and in the number of verruce at the apex. Borge has shown only four at the apex. But the sides of the semi-cells have more verruce in his as well
as in Gutwinski's figures. In possessing only one at the side of the semi-cell this comes near to Staurastrum longibrachiatum var. pseudanchora (Krieger, Die Desmidiaceen der Deutsch. Limn. Sunda Expedition, 1932, p. 202, Pl. 16, Fig. 3) but Krieger's figure shows more verrucæ at the apex. Hence the present form is best kept as a new variety.
> 25. Staurastrum retusum Turner var. punctulatum Eichl. and Gutwin.

(Figs. 82, 84)
W. and G. S. West, Freshw. Alg. Ceylon, 1902, p. 178 ; Freshv. Alg. of Burma, 1907, p. 216, Pl. 15, Figs. 30-32.
Cells single, small, deeply constricted, semi-cells pyramidate or trapeziform, angles slightly rounded, lateral margins convex, vertical view triangular, rounded argles and concave sides. Cell wall punctate. Chloroplast axile with a central big pyrenoid and three deeply forked processes radiating one into each arm.

Dimensions :

Lergth
Breadth Isthmus	.	..	\because
$21-23.7 \mu$			
$5-6.8 \mu$			

Hab.-Planktonic in Kodaikanal Lake.

26. Staurastrum gladiosum Turner

> (Figs. 68, 69, 72, 73)

De Toni, Syll. Alg., 1889, p. 1172 : Turner, Freshw. Alg. E. India, 1893, p. 112, Pl. 17, Fig. 2; W. and G. S. West and N. Carter, Mon. Brit. Desm., V, 1923, p. 57, P1. 137, Figs. 1-2; Krieger, Die Desmidiaceen der Deutsch. Limn. Sunda Expedition, 1932, p. 199, Pl. 15, Fig. 14.
Cells of medium size, about as long as broad or slightly longer than broad, sinus aente and not very widely open; semi-cells elliptic reniform; cell wall uniformly covered with stout spines, more or less arranged in circles and seattered further away. Vertical view triangular, sides slightly concave, angles broadiy rounded, about 6-8 spines on each side. Chloroplast axile, one in each semi-cell, with a central big pyrenoid and three deeply forked lobes radiating one into each angle.

Dimensions :

Hab.-Planktonic in Kodaikanal Lake.
This form seems to be slightly smaller than the type.
27. Staurastrum furcatum (Ehr.) Breb.
(Figs. 75, 76)
Tanthidium furcatum Ralfs, Brit. Desm., 1848, p. 213.
Staurastrum spinosum Ralfs, Brit. Desm., 1848, p. 143, Pl. 22, Fig. 28 ; De Bary, Conjugaten, 1858, p. 44.

Staurastrum furcatum Rabenh., Flor. Europ. Alg., III, 1868, p. 218 ; Nordst., Norges Desm., 1873, p. 33 ; Wolle, Desm.U.S., 1884, p. 150, Pl. 40, Figs. 40-41; Cooke, Brit. Desm., 1887, p. 146 ; De Toni, Syll. Alg., 1889, p. 1153; W. snd. G. S. West and N. Carter, Mon. Brit. Desm., V, 1923, p. 173, Pl. 155, Figs. 1-4; Smith, Wiscon. phytopl., pt. II, 1924, p. 118, Pl. 83, Figs. 1-3; Krieger, Die Desmiditceen der Deutsch. Limn. Sunda Expedition, 1932, p. 199, Pl. 17, Fig. 11. Cells small, slightly longer than broad, deeply constricted, sinus acute, each semi-cell with 9 bifid processes, cell wall s mooth. Vertical view triangular, angles continued into short processés ardirg in a spine, sides with a pair of lifid processes on each lateral margin. Chloroplast axile, one in each semi-cell, with a central pyrenoid and 3 forked processes radiating one into each angle.

Dimensions :

Length with spines $18-29 \mu$
Length without spines $15-19.5 \mu$
Breadth with spines $17-25 \cdot 6 \mu$
Breadth without spines $\quad . \quad 11 \cdot 9-17 \mu$
Isthmus $5-6.8 \mu$
Hab.-Planktonic in Kodaikanal Lake.
28. Staurastrum hexacerum (Ehr.) Wittr.
(Figs. 58, 59, 61)
Staurastrum tricorne Ralfs, Brit. Desm., 1848, p. 134, P1. 22, Fig. 11, and Pl. 34, Fig. $8 a$; Delponte, Desm. subalp., 1877, p. 145, Pl. 11, Figs. 48-50 ; Wolle, Desm. U.S., 1884, p. 126, Pl. 41, Figs. 36-38; Cooke, Brit. Desm., 1887, p. 167, Pl. 53, Fig. 2.

Staurastrum hexacerum Turner, Fres7ev. Alg. E. India, 1893, p. 125 ; W. and G. S. West, Freshw. Alg. Burma, 1907, p. 218 ; W. and G. S. West and N. Carter, Mon. Brit. Desm, 1923, V, p. 138, Pl. 142, Figs. 11-14.
Cells small, slightly broader than long, deeply constricted, sinus open; semi-cells sub-triangular, both margins being convex and tapering towards the angles, forming very short processes ending in about $3-4$ spines. Cell wall rough with tiny granules arrarger in concentric series. Vertical view triangular; lateral margins coner ve; chloroplast axile with a big central pyrenoid and three deeply forked processes radiating one into each angle.

67

68

69

77

Figs. 67-89. Fig. 67. Staurastrum contectum var. inevolutum, single cell showing puncter ($\times 410$). Fig. 68. Staurastrum gladiosum, vertical view with chloroplasts ($\times 110$). Fig. 69. Staurastrum gladiosum, single cell with chloroplasts ($\times 410$). Fig. 70 . Staurastrum arachne var. pulneyensis var. nov., vertical view showing spines ($\times 410$). Fig. 71. Staurastrum contectum var. inevolutum, vertical view showing chloroplasts $(\times 410)$. Fig. 72. Staurastrum gladiosum, vertical view showing spines

Dimensions:

Length	21.9-23.7 μ
Breadth with processes ..	$21 \cdot 9-26 \cdot 4 \mu$
Breadth without processes	14.6-18 μ
Isthmus	3-6-5 ${ }^{4} \mu$

This form exhibits a certain amount of variation in shape and in the granules. Sometimes the granules appear as very short spinous projections and sometimes they appear only as marginal denticulations.

29. Staurastrum columbetoides West and West

(Figs. 62, 63)
W. and G. S. West, Freshw. Alg. Ceylon, 1902, p. 186, Pl. 22, Figs. 8-9.
Cells single, small, about $1 \frac{1}{4}$ times longer than broad without processes, deeply constricted, sinns narrow and linear; semi-cells truncate pyramidate, sides slightly convex, angles produced into thin delicate, long processes with denticulated margins and bifurcate ends.

Dimensions :

Length with processes	38-4
Length without processes	12.8-16.4 μ
Breadth with processes	27-38 μ
Breadth without processes	10-14.6 μ
Isthmus	

Hab.-Planktonic in Kodaikanal Lake.

[^4]
30. Staurastrum arachne Ralfs var. pulneyensis var. nov.

(Figs. 70, 74, 78)
Cells single, small, fairly constricted; semi-cells cup-shaped with the apices bearing small spines; angles produced into long processes, each process being tipped with about 3 spines and rough with about 5-6 concentric series of denticulations. Vertical view four-sided with concave sides and a circle of eight granules in the centre. Chloroplast axile with four lobes, deeply forked, radiating one into each process.

Dimensions :

Hab.-Kodaikanal Lake.
The circle of 8 spines seen in the vertical view appears as spines at the apex in side view. In possessing this ring of spines, the Desmid comes very near St. arachne var. arachnoides (W. and G. S. West ard N. Carter, Mon. Brit. Desm., V, 1923, p. 132, Pl. 150, Fig. 3). But it differs from var. arachnoides in possessing only 8 spines and being only 4 radiate while var. arachnoides has $9-10$ verrucæ and is 4-5 radiate. Again 5-6 concentric rows of denticulations in the processes makes the present form quite different from var. arachnoides which has the rows much closer and also a large number of rows, about 9-11 or more.

31. Staurastrum gracile Ralfs

forma (Figs. 64, 65, 66)
Cells variable, usually small about $1 \frac{1}{2}$ times broader than long including the processes, constriction slight as a notch; semi-cells cup-shaped broadening slightly towards the apex which is very slightly convex. Angles produced into lqng processes tipped with 3 or 4 minute spines and provided with several concentric series of denticulations ; processes horizontal or slightly curved. Vertical view always triangular, with the sides straight or slightly concave and the angles produced to form long processes, elongated ridges seen inside the lateral sides running somewhat parallel to it; each ridge appearing slightly constricted in the middle. Chloroplast axile with a central big pyrenoid and three deeply forked processes radiating one into each arm.

Dimensions :

Hab.-Kodaikanal Lake.

This comes very near St. gracile var. ornatum (Krieger, Die Desmidiaceen der Deutsch. Limn. Sunda Expedition, 1932, p. 200, Pl. 18, Fig. 13) in general outline and in the possession of the ridges in the vertical view. But in var. ornatum the ridges are we-narked into 6 double-headed distinet verrucæ whereas the present form has only long ridges. In addition var. ornatum has a small granule at the isthmus on each side of the semi-cell, which is absent here. St. gracile forma (Krieger, op. cit., p. 200, Pl. 18, Fig. 12) also resembles this form but the forma has more arched arms in the side view and in the vertical view no ridges are present. So the present form appears to be different from the other varieties in possessing the elongated ridges which are double and very slightly divided in the middle. St. gracile var. coronulatum (W. and G. S. West and N. Carter, Mon. Brit. Desm., V, 1923, p. 100, Pl. 144, Fig. 10) also resembles this but this has not got the ridges but only distinct emarginate processes.

Genus Hyalotheca Ehrenberg 1840

 32. Hyalotheca dissiliens (Sm.) De Breb.(Fig. 87)
Ralfs, Brit. Desm., 1848, p. 51, Pl. 1, Fig. 1; Delponte, Desm. subalp., 1877, p. 47; Turner, Freshw. Alg. E. India, 1893, p. 151 ; W. and G. S. West, Freshvo. Alg. of Ceylon, 1902, p. 195 ; W. and G. S. West ard N. Caiter, Mon. Brit. Desm., Vol. V, 1923, p. 230, Pl. 161, Figs. 16-27; Krieger, Die Desmidiaccen der Deutsch. Limn. Sunda Expedition, 1932, p. 221, Pl. 26, Fig. 11. Filamentous, cells small, faintly constricted, constriction being a slight concavity in the middle of the lateral margins. Chloroplast axile, with a central pyrenoid and a number of radiating ridges.

Dimensions :
Length $13-17 \mu$
Breadth $16-18 \mu$
Hab.-Kodaikanal Lake.
Genus Desmidium Agardh 1824.

33. Desmidium Svartzii Ag.

(Figs. 85, 89)
Ralfs, Brit. Desm., 1848, p. 61, Pl. 4; W. and G. S. West and N. Carter, Mon. Brit. Desm., V, 1923, p. 246, Pl. 163, Figs. 5-8; Smith, Wisconsin phytoplankton, pt. II, 1924, p. 144, Pl. 88, Figs. 1-2; Krieger, Die Desmidiaceen der Deutsch. Limn. Sunda Expedition, 1932, p. 221, Pl. 26, Fig. 8.
Filaments spirally twisted, breadth of cells about twice the length, moderately constricted; apex of semi-cell broadly truncate,
with a short connecting process at each angle of the cell. Spaces between the cells faintly visible. Vertical view triangular with concave sides, angles broadly rounded. Chloroplasts massive, axile with broad projections running to the angles of the cells, projections incised about half the distance from the apex; pyrenoid one in each lobe, opposite to the sides.

Dimensions :

Length			
Breadth at centre	\ldots	..	$13-15 \cdot 6 \mu$
Breadth at apex	\ldots	..	$31-34 \mu$
Isthmus $\quad .$.	\therefore	..	$27-29 \cdot 9 \mu$

Hab.-Kodaikanal Lake.
This form appears to be slightly narrower than West's form, but agrees with the measurements given by Krieger.

Genus Gymnozyga Ehrenberg, 1841
34. Gymnozyga moniliformis Ehrenberg
(Figs. 83, 88)
Turner, Freshw. Alg. E. India, 1893, p. 151, W. and G. ©. West and N. Carter, Mon. Brit. Desm., Vol. V, 1923, p. 255, Pl. 165, Figs. 8-9 ; Smith, Wisconsin phytoplankton, pt. II, 1924, p. 146, Pl. 87, Fig. 11; Brühl and Biswas, Alg. of Loktak Lake, 1926, p. 314, Pl. 15, Fig. 157; Krieger, Die Desmidiaceen der Deutsch. Limn. Sunda Expedition, 1932, p. 221, Pl. 26, Fig. 10.

Filaments with barrel-shaped cells; semi-cells with a small basal inflation and an extremely median constriction, lateral margins straight; apex broad and truncate. Vertical view circular with two opposite mamillæ. Chloroplasts axile, with a central big pyrenoid and about 6 radiating plates.

Dimensions :
Length 29μ
Breadth at centre 17μ
Breadth at the apex $11 \cdot 9 \mu$
Hab.-Kodaikanal Lake.

LITERATURE CITED

Bernard, Ch. (1908)
Borge, O. (1896)
.. Protococcacées et Desmidiées, Batavia.
.. Algues unicellulaires d^{\prime} eau douce, Buitenzorg.
.. "Australische Susswasserchlorophyceen," Bih. K. Sv. Vet. Akad. Handl, 22, Afd. III, No. 9.
(1899) .. "Über tropische und subtropische Süss-wasser-Chlorophyceen," Ibid, 24, Afd. III, No. 12.

Brühl, P., and B (1926)	" Alga of the Loktak Lake," M Soc., Ber gal, 8, 257-316.
Carter, N. (1026)	Freshwater algo from India," Records of the Botanical Survey of India, 9, No. 4, 263-302.
(1935)	Alpine Desmids from British Columbia," Journ. Linn. Soc. Lond. Bot., 1, 151-74.
Cooke, M. C. (1887)	ritish Desmids, London.
Crow, W. B. (1923)	Freshwater plankton from Ceylon," Journ. of Botany, 61.
De Bary, A. (1858)	Untersuchungen über die Familic der Conjugaten, Leipzig.
D	Specimen Dcsm diacearum subalpinarum," Mem. d. R. Acad. d. Scienze di Torino, Ser. 2.
De Toni (1889)	Sylloge Algarum, Vol. I.
Fritsch, F. E. (1907)	A general consideration of the subaerial and freshwater algal flora of Ceylon," Proc. Roy, Soc. London, 79.
Rich, F	Contr butions to our knowledge of the freshwater alge of Africa, 4. Fresh water and Subaerial alge from Natal, Trans. Roy. Soc. S. Africa, 11, 297-398
(1935)	Contributions to our knowledge of the freshwater alge of Africa, 11. Alge from a pan in Southern Rhodesia," ibid., 13, 107-60.
Grönblad, R. (1921)	New Desmids from Finland and Northern Russia with critical remarks on some known species," Acta Soc. pro Fauna et Flora Fennica. 49, No. 7.
926)	Beitrag zur Kanntnis der Desmidiaceen Schlesiens," soc. Scient. Fennica. Comment. Biolog. , II, 5.
Grunow, A. (1865)	"Süsswasser-Diatomaceen und Desmidiaceen von der Insel Banka," in Rabenhorst's Beitr. zur Kenntniss und Verbreitung der Algen, Hft. II.
winski, R. (1902)	" De algis a De M. Raciborski anno 1899 in insula Java collectis," Bull. d. l'Acad. d. Sc. d. Cracovie.
Hobson, J. (1863)	" Notes on Indian Desmidien," Quarterly Journ. Mier. Sci., 8, 168-70.
hua, W. (1885)	On some Now and Rare Desmidiea," Jour. Bot., 23, 33-35.
(1886)	Burmese Desmidice, with descriptions of new species occurring in the neigh bourhood of Rangoon," Journ. Linn Soc. Lond. Bot., 21.
Krieger, W. (1932)	Die Desmidiaceen der Deutschen Limnologischen Sunda-Expedition," Arch. f. Hydrobiologie, suppl., Bd. 11, 129-230.
	Die Desmidiaceen Europas mit Beruck sichtigung der aussereuropaischen Arten," Rabenh. Kryptogamenfl., Bd. 13, Abt. 1 Lieferung 1 and 2.

Kütring, F. T. (1849) \quad. Species Algarum, Lipsiæ.
Lagerheim, G. (1888) .. "Über Desmidiaceen aus Bengalen," K. Sv. Vet. Akad. Handl., Bd. 18.
Nordstedt, O. (1873) .. "Bidrag till Käanedomen om Sydligare Norges Desmidieer," Asfa Criviv. Lund.
(1896) .. Index Desmidiacearum, Lund.

- (1908) .. Index Desmidiacearum, Supplementum, Lund.
Rabenhorst, L. (1868) .. Flora Europæa Algarum, Seztion III, Lipsiz.
.. The British Desmidiea, London.
.. "Uber einige von Prof. Hansgirg in Ostindien gesammelte Süзswasseralgen," Hedwigia, 89, 160-90.
" Phytoplankton of the Inland lakes of Wisconsin, Part 2, Desmidiacese" Bull. Wisc, Geol. and Nat. Hist. Survey, 57.
Turner, W. B. (1893) .. "Freshwater algo of East India," K. Sv. Vet. Akad. Handl., 25.
Wallich, G. C. (1860) .. "Desmidiace: of Lower Bengal," Ann. Mag. Nat. Hist., Ser, 3, 5.
West, W., and G. S. (1895)

—— and Carter, N. (1923)
"Some Recently Published Desmidieæ," Journ. Bot., 33, 65-70.
.. "On some North American Desmidies," Trans. Linn. Soc. Bot., Ser. 2, 5.
"Desmids from Singapore," Journ. Linn. Soc. Bot., 88.
"A Contribution to the Freshwater Algm of Ceylon," ibid., Ser. 2, 5.
. A M Mnngraph of British Desmidiacecs, Vols. I-IV, London.
" Freshwater Algø from Burma, including a few from Bengal and Madras," Ann. Roy. Bot. Garden, 6.

Wolle, Fr. (1884)
Zeller, G. (1873)

A Monograph of the British Desmidiacea, Vol. V, London.
.. Desmids of the United States, Bethlehem.
.. "Alge collected by Mr. S. Kurz in Arracan and British Burma," Journ. Asiat. Soc., Bengal, 42.
Statement showing the distribution of the forms recorded in this paper

Names of the forms	Place of collection in S. India	Previous places of collection in Incia	Author
Gonatozygon Kinahani (Arch.) Rabenh. ..	Kodaikanal	Assam, Burma, Bongel	Carter. W. and G. S.
Netrium digitus (Ehrb.) Itzigs and Rothe	do.	Ceylon, Burma, Hyderabad	Fritsch, w. and G. S. West, Carter, Tuner
Closterium libellula Focke var, pulneyensis var. nov.	do.		
Closterium Kutzingii Breb,	do.	Ceylon, Burma, Bengal	Crow, W. and G. S. West, Turner
Closterium Diance Ehrenb.	do.	Bumma, Ceylon, Bombay	Joshua, W. and G. S. West, Schmidle
Closterium didymotocum Corda var. annulatum var. nov.	do.		
Pleurotanium Trabecula (Ehrenbg.) Nageli	do.	Ceylon, Burma, Bengal	Fritach, W. and G. S. West, Turner
Pleurotanium minutum Delp. var. gracile Wille .	do.	Ceylon	W. aid. G. S. West
Pleurotaenium Kayei Rabenh.	do.	Assam, Burma, Bengal	Carter, Joshua, Lagerheim
Pleurotanium tcssellatum Joshua var. bulbosum Krieger.	do.		
Euastrum sinuosum Lenorm	do.	Burma, Bengal	Carter, Joshua, Turner
Micrasterias pinnatifida (Kutz.) Ralls.	do.	Ceylon, Loktak Lake, Bengal, Chittagong, Burma	W. and G. S. West, Brühl and B was, Carter, Joshua, Turner

Statement showing the distribution of the forms recorded in this paper-(Contd.)

Names of the forms	Place of collection in S. India	Previous places of collection in India	Author
Micrasterias incisa (Breb.) Ralfs. var, Wallichiana Turner	Kcdaikanal	Loktak Lake, Bengal, Assam, Burma	Briäh1 and Biswas, Carter, Joshua, Turner
Cosmarium moniliforme (Turp.) Ralfs, forma - punctata Lagerh.	do.		
Cosmarium moniliforme (Tùrp.) Ralls. forma panduriformis Heimerl	do.		
Cosmarium obsoletum (Hanztsch) Reinsch.	do.	Bengal, Ceylon, Burma	Lagerheim, Crow, W. and G. S. West, Joshua, Turner
Cosmarium globosum Bulnh.	do.	Ceylon, Burma	W. and G. S. West, Joshua
Cosmarium pachydermum Land. var, indicum var. nov.	do.		
Xanthidium sexmamillatum West and West var. pulneyensis var. nov.	do.		
Arthrodesmus subulatus Kutz.	do.	Ceylon, Burma, Bengal	Crow, Joshua, Turner
Staurastrum corniculatum Lund, var. spinigerum West	do.		
Staurastrum Tohopekaligense Wolle . .	do.	..	.
Staurastrum unicorne Turner var. graeile var. nov.	ds*	.	..

Bengal	Turner
Ceylon, Burma	W. and G. S. West
Burma, Bengal	W. and G. S. West. Turner
Ceylon	W. and G. S. West
Ceylon, Loktak Lake, Bengal, Burma	Fritsch, W. and G. S. West, B.ühl and Biswas, Wallich, West and West, Turner
Loktak Lake, Bengal	Brühl and Biswas, Wallich, Therner
Ceylon, Loktak Lake. Bongal, Burma	Fritsch, W. ard G. S. West, Brïhl and Biswas, Wallich. W. and G. S. West, Turner

Staurastrum contectum (Turner) var. inevolutum Turner	
	Staurastrum longibrachiatum (Borge.) Gutw. vap. intermedium var. nov.
	Staurastrum retusum Tarn. var. punctulatum Eichl, and Gutw.
	Staurastrum gladiosum Turner
	Staurastrum furcatum (Ehr.) Breb.
	Staurastrum hexarerum (Ehr.) Wittr. ..
	Staurastrum columbetoides West and West
	Staurustrum arachne Ralfs. var. pulneyensis var. nov.
	Staurastrum gracile Breb. forma
	Hyalotheca dissiliens (Sm.) Breb.
	Desmidium Suarlzii Ag.
	Gymnozyga moniliformis Ehrenb.

[^0]: *From the University Botany Laboratory, Madras. 9

[^1]: libellula var. pulneyensis var. nov., single cell with chloroplasts ($\times 410$). Fig. 8a. Closterium libellula var. pulneyensis, girdle bands seen cieany after treatment with con. KOH $(\times 410)$. Fig. 86 . Closterium libellula var. pulneyensis ($\times 410$). Fig. 9. Cl)sterium Dianecs, tip of the cell ($\times 410$). Figs. 10 a-c. Pleurotannium minutum var. gracile. a, single cell ($\times 410$) ; b, showing chloroplast and nucleus ($x 410$); c, showing chloropiast at the end of the cell ($\times 410$). Fig. 11. Closterium didymotocum var. annulatum var. nov., single cell ($\times 190$). Fig. 12. Closterium didymotocum var. annulatum var. nov., girdle bands in the middle of a seai-cell ($\times 410$). Fig. 13. Pleurotanium Trabecula, tip of the cell with pores ($\times 410$ Fig. 14. Closierium Diance, showing chloroplast and nucleus ($\times 410$). Fig, 15. Closterium Dana, single cell with girdle bands ($\times 410$). Fig. 16. Closterium Kutzingii, single cell ($\times 190$). Fig. 17. Closterium Kutzingil, zygote with empty semi-cells ($\times 190$). Fig. 18. Closterium Kutzingii, tip of the cell ($\times 410$). Fig. 19. Closterium Kutzingib, striations on the cell-wall ($\times 410$). Fig. 20. Pleurotanium Trabecula, portion at the isthmus ($\times 410$). Fig. 21. Pleurotacenium Trabecula, part of the single cell ($\times 190$).

[^2]: chloroplasts ($\times 190$). Fig. 32. Cosmarium globosum, single cell with pores (\times 410). Fig. 33. Cosmarium globosum, vertical view with chloroplasts (\times 410). Fig. 34. Cosmarium globosum, single cell with chloroplasts ($\times 410$). Fig. 35. Micrasterias incisa var. Wallichiana, vertical view ($\times 410$). Fig. 36. Cosmarium pachydermum var. indicum var. nov. semi-cell with big pores ($\times 410$). Fig. 37. Cosmarium pachydermum var. indicum var, nov., vertical view with chloroplasts ($\times 410$). Fig. 38. Cosmarium pachydermum var. indicum var. nov., semi-cell showing chloroplasts ($\times 410$). Fig. 39. Cosmarium pachydermum var. indicum var. nov., single cell ($x 410$).

[^3]: after division ($\times 410$). Fig. 49. Arthrodesmus subulatus, daughter cells after division showing the outer piece ($\times 410$). Fig. 50. Arthrodesmus, subulatus, vertical view showing chloroplasts $(\times 410)$. Fig. 51. Staurastrum corniculatum var. spinigerum, single cell ($\times 410$). Fig. 52. Staurastrum corniculatum var. spinigerum, vertical view with chloroplasts $(\times 410)$. Fig. 53. Xanthidium sexmamillatum var. pulneyensis var. nov., single cell $(\times 410)$. Fig. 54. Staurastrum unicorne var. gracile var. nov.. vertical view showing chloroplasts ($\times 410$). Fig. 5 . Staurastrum unicorne var. gracile var, nov., cells in division ($\times 410$). Fig. 56. Staurastrum corniculatum var. spinigerum, vertical view with chloroplasts ($\times 410$). Fig. 57. Xanthidium sexmamillatum var. pulneyensis var. nov., vertical view $(\times 410)$. Fig. 58. Staurastrum hexacerum, vertical view showing spines ($\times 410$). Fig. 59. Staurastrum hexacerum vertical view showing chloroplasts ($\times 410$). Fig. 60. Staurastrum unicorne var. gracile var. nov., single cell ($\times 410$). Fig. 61. Staurastrum hexacerum, single cell ($\times 110$). Fig. 62. Staurastrum columbetoides, single cell ($\times 410$). Fig. 63. Staurastrum columbetoides, side view of the cell ($\times 410$). Fig. 64. Staurastrum gracile, vertical view with chloroplasts ($\times 410$). Fig. 65. Staurastrum gracile, vertical view with vidges at the top ($\times 410$). Fig. 66. Staurastrum graoile, single cell ($\times 410$).

[^4]: ($\times 410$). Fig. 73. Staurastrum gladiosum, single cell with spines ($\times 410$). Fıg. 74. Staurastrum-arachñe var. pulneyensis var. nov., semi-cell ($\times 410$). Fig. 75. Staurastrum furcatum, singie cell ($\times 410$. Fig. 76. stuurastrum furcatum, vertical view with chloroplasts ($\times 410$). Fig. 77. Staurastrum longibrachiatum var. intermedium var. nov., single cell ($\times 410$). Fig. 78. Staurastrum arachne var. pulneyensis var. nov. vertical vicw showing chloroplasts ($\times 410$). Fig. 79. Staurastrum Tohopelcaligense, vertical view ($\times 410$). Fig. 80. Staurastrum longibrachiatum var. intermedium var. nov., vertical view ($\times 410$). Fig. 81. Staurastrum longibrachiatum var. intermedium var. nov., semi-cell showing the verrucæ ($\times 410$). Fig. 82. Staurastrum retusum var. punctulatum, vertical view with chloroplasts ($\times 410$). Fig. 83. Gymnozyga moniliformis, vertical view with chloroplasis ($\times 410$). Fig. 84. Staurastrum retusum var. punctulatum, single cell with pures ($\times 410$. Fig. 85. Desmidium Suoartzii, vertical view with chloroplasts ($\times 410$). Fg. 86. Staurastrum Tohopekaligense, single cell showing pores $(\times 410)$. Fig. 87. Hyalotheca dissiliens ($\times 410$). Fig. 83. Gymnozyga monit formis, flament with one cell in divisic showing the replicate folds ($\times 410$). Fig. 89. Desmidium Swarizii ($\times 410$).

